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The quantum mechanical theory for the scattering of two identical rigid rotors is reviewed and applied to the
collision of O,(*Z;) molecules using a new accurate ab initio potential energy surface (PES) for the quintet
state of the composite system. The PES is based on calculations using restricted coupled-cluster theory with
singles, doubles, and perturbative triple excitations [RCCSD(T)] [Bartolomei; et al. J. Chem. Phys. 2008,
128, 214304.]. This PES is extended here for large intermolecular distances using the ab initio long-range
coefficients of Hettema et al. [J. Chem. Phys. 1994, 100, 1297.]. Elastic and rotationally inelastic integral
cross sections have been obtained by means of close coupling calculations in the subthermal energy range
(center-of-mass velocities below 500 m/s). Results are compared with those obtained using a PES derived
from molecular beam experiments [Aquilanti; et al. J. Am. Chem. Soc. 1999, 121, 10794.]. General agreement
is found between both PESs, although the experimentally derived PES appears as somewhat more anisotropic
at least for the studied energy range. There is, however, a significant difference in the absolute value of the
elastic cross sections that is due to differences in the long-range dispersion interaction. The performance of
the ab initio PES for higher velocities (relevant to experiments) is also explored by retaining just the isotropic
component of the interaction. A satisfactory agreement is found for the shape of the glory pattern but shifted

toward lower absolute values of the cross sections.

I. Introduction

A detailed knowledge of the interactions between oxygen
molecules is of interest in several areas of research. In addition
to its key presence in our upper atmosphere where collisional
processes compete with radiative events involving different
electronic states,! it is of interest in several technological
applications such as the Chemical Oxygen lodine Laser,>* while
presenting also intriguing features in the condensed phase.* In
addition, there is recent interest in achieving gas cooling and
trapping of oxygen molecules.’!°

Despite the previous comments, and albeit the hypothesis on
the binding of the oxygen dimer and related topics dating back
to Lewis and Pauling times,!"!> experiments and theory on the
generic O,—0, dimer are relatively scarce. One of the reasons
for this lies in the open shell structure of the oxygen molecule
that translates to the oxygen clustering. Thus, the triplet ground
state of the monomers gives rise to three different potential
energy surfaces (PES) of singlet, triplet, and quintet multiplicities
that might exhibit different properties. This difference, and its
interplay with intramolecular spin—spin coupling, is expected
to play a role in the dynamics at ultralow energies.>!*!13

For all theses purposes an accurate knowledge of the PES is
unavoidable. However, even for a small size system as this, it
represents a complicated problem for ab initio studies. The
problem of computing accurately weak intermolecular forces
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is increased by the open-shell character of the constituents which
requires the use of multi configurational wave functions. Being
in the limit of current theoretical methodologies, another
approach would be the fruitful interplay between theory and
experiment so typical in our field. In this sense it is worth
mentioning that the first reliable potential was that of Bussery
and Wormer!* (BW PES), which was constructed using ab initio
and semiempirical data.'>'® Theoretical work by Bussery-
Honvault et al.'”!® based on this PES helped in a clearer under-
standing of the spectroscopic experiments by Campargue et
31.19’20

As is well-known, spectroscopy probes the potential well
region; thus if one intends to describe more realistically the hard
wall or asymptotic behavior in a feedback process between
theory and experiment, scattering measurements are better suited
to this goal. In parallel with scattering experiments, the Perugia
group?"?? has produced an experimentally derived PES (hereafter
referred as the Perugia PES) that has given the most accurate
comparison up to date with experiments. By measuring the total
integral cross section of rotationally hot and cold molecular
beams of oxygen molecules colliding with target O, and under
such conditions that glory interference effects could be observed,
they were able to fit a full dimensional rigid rotor PES including
the spin dependence. This PES compares qualitatively well with
the previous BW PES, but, they differ in the details of the
spectroscopy'>"> as well as in the collision dynamics.??

In the meantime, new and powerful highly correlated ab initio
methodologies have emerged so that some cases are able to
reach spectroscopic accuracy. It has to be said that most reliable
methods can be only applied to closed-shell systems (in general)
or to be more specific to those systems for which single
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reference zero-order wave functions are reasonable starting
points. This is the case for the quintet state of the oxygen dimer.
After some preliminary studies,?~2® we have recently presented
a full-dimensional rigid rotor PES* computed with the restricted
coupled-cluster theory with singles, doubles, and perturbative
triple excitations [RCCSD(T)]. A proposition for the computa-
tion of the singlet and triplet counterparts was also presented.?”-*
In ref 29, a detailed comparison with the BW and Perugia PESs
(of topographical nature) was carried out, and results for the
dimer bound states were reported.

Once the complicated task of computing a good PES and a
reliable fitting to a standard formulas has been achieved, the
next goal consists in studying the collision dynamics, which is
the purpose of the present work. In the energy domain, the most
accurate dynamical procedure is solving the so-called close-
coupled equations. The presence of many coupled rotational
states makes the case a challenging one and only very recently
for the lighter diatom—diatom collision (i.e., H,*), cross sections
for the very first vibrational states have been obtained. In this
work we report the first accurate close coupling calculations
on the O, + O, rotational collision dynamics, using a very recent
quintet PES.? The PES is extended here by an adequate long-
range behavior using ab initio dispersion coefficients.>? The
dynamical treatment involves the collision between two linear
rigid rotors; i.e., the high frequency vibrational modes of the
oxygen molecules are not taken into account in the model. In
addition, the fine structure of oxygen™ is neglected within the
present treatment, although we are aware that its effects are very
important in collisions at kinetic energies lower than those
studied here.>!° The study is restricted to subthermal energies
(total energies less than 175 cm™!), given the rather heavy
masses involved. A detailed comparison with the Perugia PES
(successful in reproducing experiments performed at higher
energies) is made in searching for possible improvements needed
in the theoretical model.

The paper is organized as follows. Section II deals with the
theory of vibrationless diatom—diatom collisions in the cases
of both distinguishable and indistinguishable monomers. Details
regarding application to O,—O, are given in section III, and
the results are reported and discussed in section IV. Finally
conclusions are written in section V.

II. Theory

We first give a summary of the theory for the scattering of
two closed-shell linear rigid rotors treated as distinguishable.**%
A discussion on the modifications in the theory for indistin-
guishable partners is followed.

Distinguishable Monomers. Using diatom—diatom Jacobi
vectors R, ry, and r, in a space-fixed (SF) frame, the Hamil-
tonian for the interaction of two rigid rotors is written as (in
atomic units),

132+22

2uR HR* 2uR’

+BG D +V ()

where B is the rotational constant, # is the reduced mass, V is
the intermolecular PES, and f, Ji, and j, are angular momentum
operators associated with R, r;, and r,, respectively. As the total
angular momentum J = I+ Ji + j» commutes with H, solutions
of the time-independent Schrodinger equation are written with
well-defined J and J, values and expanded as
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where y = (ji, jo. J12,/) indicates the incoming channel and /¥
are angular functions (see eq 7 of ref 35). Substitution of eq 2
into the Schrodinger equation and integration over the angular
variables lead to the well-known set of coupled differential
equations for the radial coefficients g/%.% After solving the
close-coupled equations that lead to the Transition matrix 754,
it only rests to connect this matrix with the scattering amplitude.
The asymptotic wave function for a “physical” incoming state

o = {jimjamy} is

lpu(R—Hx:) - eXp[ikjljz. R] lelnl(fl) szlnz(fZ) +
. explik; ; K] . .
zfu'a(R)T Yj,]mll(rl) Yj'z’"’z(rz)
o

3)

where Y, are spherical harmonics and kj]jzz = 2ulE — ¢, —
&1, with & = Bj(j + 1). If W, is written as a linear combination
of WM

_ IMj sl IM
lpjlmljzmz z Am1’"2 lpjljzflzl (4)
JMj ol

then the expansion coefficients A;j12' are known by matching

the incoming parts of W, and W/ and, by comparing the
scattered parts, the scattering amplitude fyo(R) and related cross
sections are obtained. After summing over final m] and m5
projections and averaging them over initial m;m, ones, the
integral cross section for a transition jj, — jij3 is given by***

i 2 47 M2
Of'a'z,iljz(kjaz)_ 2 2 gJ'T;’ﬂ ®)

gy 85,8, D' all’

where g; = 2j + 1 and the superscript “d” indicates a cross
section for distinguishable monomers.

Indistinguishable Monomers. If the colliding rotors are
identical, the Hamiltonian commutes with the exchange operator,
Py,, which changes (R, ry, r;) to (—R, 1y, r;). Assuming that
the nuclear spin of the molecules is unchanged and that the
electronic state is symmetric, the observed cross section is given
by36

o=Wo + Wo (6)

where 0% are cross sections corresponding to even or odd
scattering wave functions, and W** are nuclear statistical
weights.

It must be pointed out that there is not complete agreement
in the literature regarding the “correction” factors that must come
in the symmetry adapted cross sections when j; = j, and/or j|
= j5.3%36=41 Tn particular, Huo and Green*' rederived the very
much cited Takayanagi’s theory** and obtained formally dif-
ferent cross sections. For this reason, we have re-examined the
theory and outline here our conclusions. According to Giou-
mousis and Curtiss,*> the normalized incoming state with
symmetry & = +1 is
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It is worth noting that {lk;;0&)} is a complete orthonormal set,
with the restriction that vectors k;;, just cover half a sphere.
However, there are not restrictions for the allowed values of
{jimjom,}. Indeed, defining & = jom,jimy, it can be seen from
eq 7 that Ik;;,05) and Ik;;,0&5) are different states, but that
k;,;,0.5) and |—k;,;,0&) refer to the same state. It must be pointed
out that in the incoming state of ref 41 an “ordered set”
{jimjom,} was involved and a different normalization factor
was given.

The outgoing wave is built using the same type of linear
combination as for the incoming one.*** After some rearrange-
ments, it is written as>*

R exp[ikj, ., R]

lp(élout(R_)w) . ¢ Q(R) V2
g‘fg' 2R

Yj'lm'l (f‘l ) Yj’znl'z(fZ)
3

where the scattering amplitude f3, relates to those of the
distinguishable case as

Fera® = frrgR) + Efz(R) )

Although eq 9 allows one to obtain symmetrized cross
sections from the calculation of distinguishable ones, it is
computationally more convenient to adapt the wave functions
of eq 2 to the symmetry. The modification only applies to the
angular part:®

JM ittt M
pus = L+ ST (10)
TRA+EED T "

where ¥ = (joj j120). It must be pointed out* that this basis does
require choosing a well ordered set (j; = j,, for example). Note
also that when j; = j,, then jj,’s and [’s such that &(—1) 7/t =
—1 must be excluded from the expansion (note the denominator
in eq 10). Symmetry adapted T° matrices are computed by
solving the close-coupled equations. They are related to the
unsymmetrized ones by

1}/15 _ T}’/{‘; + .,;:(_l)i'l‘*'j'z—j']z‘*'l'T}_/,fl‘;f/
RN (G U =G D P T B Gl DI T

(11)

Symmetrized cross sections can be obtained in a way analogous
to the distinguishable ones or, alternatively, by using eqs 9 and
11 and are given as

da(l + 0, )1 +0,,) < -
= 2 ngT;'ygl

Jjrjall!

& =
5o Ky, ) g
v, 8518,

(12)
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where the prime in the summation symbol indicates that a
restricted set {7} is used. Equation 12 agrees with the expression
obtained by Takayanagi** and is the one used in the MOLSCAT
code.** We believe that Huo and Green’s*' formula, in which
the factors (1 + J;;)(1 + 5]"[/"2) are absent, is formally
incorrect because of inconsistencies in their definition of the
asymptotical wave function.

Distinguishable vs Indistinguishable Cross Sections. Com-
parison between distinguishable and indistinguishable cross
sections provides insight into the effects of indistinguishability
and, in addition, can be of help in the elucidation of the
degeneracy or correction factors that should eventually be
included. For the differential cross sections one immediately
obtains from eq 9 that

dos, ky R R
dgu(kiﬂo) - k_y{ Ifa’(x(R)lz + lfd’a(_R)lz +
W2 ¥

2ERe[f%,(R) fo,(—R1}
(13)

A distinction between two types of effects should be made. The
first one can be denoted as purely classical: There are two
processes (indistinguishable for the detection apparatus) in which
a particle is detected with jj in the R direction but in one case
the particle is projectile and in the other one it is target. The
second effect is quantum-mechanical: it consists in the interfer-
ence between the amplitudes of these two paths and is given
by the third term in eq 13.

An analogous relationship is obtained for the integral cross
sections. By substituting eq 11 into eq 12,

o =0, 4o, 4+ EM™ (14)

J'"9 J'J' Jy' 1
where the interference term is

o= T N =) Re T T
ki ;" 8.8), dirgmll

5)

Takayanagi®* noted that the cases j, = j, or ji = j, where
the symmetrized cross sections become (disregarding interfer-
ence effects) twice the distinguishable ones, are “exceptions”.
For these cases, a number of different “correction factors” have
been proposed.*~* To look for the adequate factors, we believe
that it is convenient to take into account eq 14 or 13 (neglecting
for this purpose the interference terms) and study which
contributions (quoting Gioumousis and Curtiss**) “would rea-
sonably be considered to produce identical effects in a careful
classical treatment”. For this analysis it is very important to
bear in mind the type of experiment one wants to simulate.

For example, if one considers the outcome ji = j5 in a
molecular beam experiment, it is clear that if the target is
completely surrounded by counters then each collision event
will be counted twice,* in accordance with eqs 13 and 14.
However, if the integral cross section is defined from the number
of particles lost from the incident beam, then eq 14 must divided
by two. In this work, we correct the cross sections according to
this argument:
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Obviously, much care should be taken in being consistent
with the experiments or other calculations. For instance,
equivalent expressions to eq 16 have been obtained by Zarur
and Rabitz*® for computing cross sections, and in recent works
on ultracold O, + O, collisions.”'® However, Rabitz and Lam?®
found that the cross section consistent with their master kinetic
equation must be defined as per molecule, for which the
correction factor is (1 + 90;,0;;)(1 + 0;,,)"'(1 + 6;;)7", and
this convention has been followed by some authors.* Finally,
Huo and Green’s*' cross section is, for practical purposes,
equivalent to employing a correction factor of (1 + d;;,) (1 +
0;,,)"", which has been used by other authors.*

II1. Application to 0,—0,

Symmetries. The appropriate molecular symmetry group for
describing O, + O, nonreactive collisions is Gis,'"?**’ which
involves the operations of spatial inversion, E*, permutation of
nuclei within the monomers, P; and P,, and simultaneous
permutation of nuclei between monomers 1 and 2, Py,. Present
calculations have been carried out with four identical nuclei of
the most abundant '°0 isotope, i.e., bosons of zero nuclear spin.
Hence the total wave function (electronic, nuclear spatial and
nuclear spin) must be symmetric under any of the three
permutations listed. Since the nuclear spin wave functions are
symmetric, the product of electronic and nuclear spatial wave
functions must be always symmetric.

Regarding P, and P», as the electronic wave function of the
monomers is odd under these operations, the rotational wave
function of the fragments must be odd. Hence the wave function
expansion of eq 2 must be built using spherical harmonics with
odd j; and js.

The consequences on the dynamics of the symmetry under
Py, have been already discussed in detail in the previous section,
so here we only mention details specific to the present system.
For the quintet state of O,—0O,, the electronic wave function
can be written by coupling the monomers electronic spins using
Clebsch Gordan coefficients*®*° and it can be shown that this
wave function is even under this operation. Hence, and taking
into account that W* = 1 and W* = 0 (eq 4), only even cross
sections (0™) need to be computed.

Finally, the angular basis in eq 10 is already adapted to E*
(with a parity given by (—1)"%1%2%35) Tn the MOLSCAT code,
cross sections for the two parity blocks are computed separately
and summed up afterward.

Quintet PES. We present some details about the ab initio
PES for the quintet state (total electronic spin S = 2) of 02(3Zg )
+ 0,(Z;) and, specifically, on its extrapolation to large
intermolecular distances. A comparison with the Perugia PES
for the same multiplicity is outlined.

The ab initio PES has been obtained within the RCCSD(T)
level of theory for a large set of relative orientations and
intermolecular distances, while the interatomic distance within
each diatom has been fixed to its equilibrium distance, r. =
2.28 bohr (rigid monomers). Details of these calculations are
given in ref 29. The Perugia PES, on the other hand, has been
derived®? from observed cross sections using effusive as well
as supersonic seeded beams, and from data on second virial
coefficients. In both cases, the interaction potential V is given
by a spherical harmonics expansion as'
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V(R.0,.0,0) = (4m)" Y, f""(R) A, ,(0,.0,.¢)
1oy, L

7)

where 6, and 6, are the angles formed by R and r;, R and r»,
respectively, and ¢ is the torsional angle, and

2L + 1)12 l, L, L
Al"l,,L(el’Gz’d)) = ( 4 ) Z(m _nl; 0) X
Y[am(el’o) Y’)—m(02»¢)

(18)

where Y, ,, and Y}, ., are spherical harmonics which are coupled
with the aid of a 3 — j symbol, and /,, ,, and L are even integers
(due to the symmetries discussed above).

In the case of the Perugia PES, the expansion of eq 17 has
four different terms with (,/,L) = (000), (202), (220), and (222),
whereas the ab initio one involves 25 additional terms (listed
in ref 29), to accurately account (within 1%) for the anisotropy
of the interaction. The spherically averaged terms agree quite
well particularly in the repulsive region, while some differences
are found in the minimum as well as in the long-range tail.?’
Both interaction potentials also agree in the geometry and well
depth of the absolute minimum, in the crossed (D,,) configu-
ration, although the equilibrium distances differ.?® More details
can be found in refs 29 and 26.

The RCCSD(T) PES has been computed for N = 18
intermolecular distances ranging from R; = 2.51 to Ry = 8.47
A (additional calculations with respect to those of ref 29 were
performed for short intermolecular distances). To carry out
collision dynamics calculations, it is mandatory to extend the
PES with a reliable long-range interaction. There is an impres-
sive literature about ab initio calculations of polarizabilities as
well as on multipole moments for 02(32@, and we do not intend
to review it here (see ref 50 for instance, and references therein).
Quadrupole and higher order moments were taken from ref 15.
For the dispersion interaction, which is more significant in this
system, we have taken the Clsh* coefficients of Hettema et al.,*
obtained from dynamical polarizabilities calculations using
response theory at the multiconfiguration self-consistent field
level, and where a rather large set of coefficients has been
provided. Specifically, we have taken the Ci(l,,l, = 0,2;L =
0—4) coefficients from the third column of Table 6 of ref 32
and the Cl¢"*(l,,,l, = 0—4;L = 0—6) ones from the second column
of the same table. In Table 1, we compare those coefficients
with the Perugia ones, for the isotropic and the first anisotropic
term. It can be seen that the ab initio coefficients are much
smaller than those of the experimentally derived PES. The
consequences of this difference will be shown and discussed in
detail in the next section. It can be noted, however, that other
ab initio calculations agree with that of Hettema et al. within
less than 5% (see, for instance, Table 8 of ref 51 and Table 3
of ref 52).

The matching procedure between the RCCSD(T) points in
the interaction region and the long-range analytical behavior
has been performed as follows. For every term (/,/,L), an
additional point Ry4+; = 10.05 A in the grid of intermolecular
distances was defined and assigned the energy —Cy*/RS — Clght/
R8. Between R, and Ry, the energy of the term is obtained by
cubic spline interpolation. For distances larger than Ry, the
analytical expression is used. For those terms with no long-
range coefficients available, adequate exponential functions are
used for the asymptotic behavior. The procedure worked quite
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TABLE 1: Long-Range Coefficients of Hettema et al. (Table
VI of Ref 32), Used in This Work, for the Isotropic and the
First Anisotropic Terms of the Expansion of Eq 17 ¢

Pérez-Rios et al.

TABLE 2: Convergence Test of Cross Sections (in Az) for
Selected Transitions (j1, j») — (ji, j2) at Two Different Total
Enegies”

(LIpL) ab initio Perugia (1. j2) — (1 J2) E=280cm™! E =150 cm™'
000 Cs (eV A% 35.05 53.00 £5.0 1, H—(1,1) Bl 316.69 274.94
Cs (eV A%) 261.95 B2 316.78 274.37
202) Cs (eV A%) 2.53 6.12 1, 1) —(@3,3) Bl 17.37 13.98
Cs (eV A%) 81.99 B2 17.39 13.76
. 1, 1) —@3,5) Bl 15.79 10.41
“Hettema’s terms ([,/,L) have been divided by [(2, + 1)(2], + B2 16.39 10.27
1)(2L + 1)]"2 to account for the same convention in the expansion. (1, 1) — all Bl 40123 359.22
Comparison is provided with the dispersion coefficients of the ’ B2 401.27 357.92
experimentally derived Perugia PES.? 3,3)— (3, 3) Bl 354.97 206.21
. 00 B2 354.19 293.51
Spherically averaged term, fo (R) (3’ 3) — (3’ 5) Bl 34.55 17.88
oF Y r ] B2 35.80 17.91
(3, 3) —all Bl 441.89 374.01
B2 442.18 373.26
3,5 —@3,5) Bl 433.39 317.23
~ =2} B2 441.27 314.44
Tg (3,5) —all Bl 514.32 389.04
2 B2 522.74 387.07
5 Present PES ——
E .k —CGJRE‘:g:Ea Eﬂ:gmgg ] “Total (elastic + inelagtic) cross sections are indicz}ted by (i, j.z)
Perugia PES —— — all. Results corresponding to using 10 and 14 rotational levels in
the wavefunction expansion are indicated by Bl and B2,
respectively. See text for more details.
_s 3 -
6 8 10 12 than the well depth of the PES (D, ~ 130 cm™!), the code was
R(4) modified to obtain the step size from E\ + D, instead of EP**.

Figure 1. Comparison of intermediate and long-range behavior of the
spherically averaged term for the present ab initio and Perugia quintet
PESs.”? Ab initio RCCSD(T) points are represented by filled squares.
Analytical long-range behavior, used in the present PES for distances
larger than 10.05 A, is shown in the complete range for comparison:
in black, only the R™% term; in purple, effect of adding the R™8 term.
See text for details.

well, indicating a good consistency between the supermolecular
calculations and the calculations of the polarizabilities of the
fragments.

As an example, the isotropic term is shown in Figure 1. The
RCCSD(T) points are indicated by squares and the radial
dependence obtained as explained above is shown by the solid
line. It can be seen that a smooth behavior is achieved. Also
shown in the Figure are the —C4/R® and the complete —Cy/R®
— Cy/R® long-range functions. It is found that, from asymptotic
intermolecular distances and up to the point at 8.47 A, the
interaction is well described just by the n = 6 term. For shorter
R’s up to the next RCCSD(T) point, the induced dipole-induced
quadrupole term is necessary to accurately reproduce the
interaction, whereas for much shorter distances, higher order
terms should be included in the expression of the dispersion
interaction. Finally, it can be seen in 1 that the Perugia term,
given by —Cy¢/R® with the coefficient of Table 1, is more
attractive than the ab initio term at all intermolecular distances.

Computational Details. Integral cross sections were com-
puted for total energies E,, lower than 175 cm™! using the
MOLSCAT code.* The close-coupled equations were solved
using the Alexander and Manolopoulos’ hybrid log-derivative/
Airy propagator.>® The minimum intermolecular distance is fixed
at 2.51 A, and the maximum one, at 46.8 A. At R = 11.7 A,
the switch between the log-derivative and the Airy propagator
is done. The parameter steps, which indicates the number of
integration steps per half-wavelength for the open channel of
highest kinetic energy in the asymptotic region (EF™), was fixed
to 5. However, given that the total energies are usually smaller

In this way, typical step sizes for the propagation were of 0.04
A. The maximum value of the total angular momentum J used
in the calculations was chosen according to a convergence
criterion of 0.5 and 0.005 A? for the elastic and inelastic cross
sections, respectively. About 1000 energy points were employed
in the results shown in the next section. The reduced mass and
rotational constants used (for '°0) are 15.9994 amu and 1.438
cm™!, respectively.

A total of ten rotational levels were included in the close-
coupling equations, corresponding to the lowest internal energies
of the fragments, i.e., (ji, j») = (1, 1), (1, 3), (3, 3), (1, 5), (3,
5),(1,7),(5,5),(3,7),(5,7),and (1, 9) (basis B1). This typically
involves solving sets of close-coupling equations of about 300
channels for each inversion parity, total angular momentum,
and energy. We have performed test calculations including four
additional levels [(j1, jo) = (3, 9), (7, 7), (5, 9), (1, 11), basis
B2] to check the convergence with the rotational basis. In Table
2 we compare the cross sections for various relevant transitions.
From this, we estimate that the integral cross sections reported
in the next section are converged within about 5%.

IV. Results and Discussion

Low Energy Cross Sections. In Figure 2 we report elastic
and inelastic cross sections as functions of kinetic energy for
the three lowest initial levels (j;, j») = (1, 1), (1, 3), and (3, 3)
and using both the ab initio and the Perugia quintet PESs.
Regarding elastic cross sections, the main noticeable difference
is that the Perugia PES systematically gives larger absolute
values than the ab initio one. This feature is mainly due to their
different long-range behavior and is discussed in more detail
in a following paragraph. For the inelastic processes, it can be
seen that the ab initio and Perugia cross sections are quite
similar. In general, the Perugia cross sections are somewhat
larger than the ab initio ones, although the reverse becomes
true for some transitions at larger kinetic energies (note also
that the (1, 1) — (1, 5) ab initio cross section is larger in the
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(a) (j;=1J;=1) elastic cross section

(b) (j;=1,j,=3) elastic cross section
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Figure 2. Elastic (upper panels, in logarithmic scale) and inelastic (lower panels) integral cross sections (in A?) as functions of kinetic energy (in
cm™!), obtained by means of close-coupling calculations. Results using the ab initio quintet PES are reported in red and those corresponding to the
experimentally derived PES, in blue. Initial rotational levels (j;, j») = (1, 1), (1, 3), and (3, 3) correspond to the first, second, and third columns,
respectively, and final levels (ji, j5) for the inelastic transitions are indicated inside the panels. See text for discussion.

whole range). Thus, it appears that the Perugia PES is “more
anisotropic” at least for low energy transitions. This result has
been somewhat surprising to us because in a previous work? it
was concluded that the ab initio PES is more anisotropic. Indeed,
it was found that the potential wells at the limiting geometries
(rectangular, crossed, T-shaped and linear) differ much more
among each other in the ab initio than in the Perugia PES.
Clearly this larger anisotropy is not revealed in rotational
transitions at low energies.

On the other hand, it can be seen in Figure 2 that cross
sections involving the initial and/or final (jj, j») = (1, 1) level
are much more structured than cross sections for other levels.
This equally happens for the ab initio and the Perugia PES.
After some analysis of the contributions to the cross section
(see eq 12), we have found that, for every transition involving
a pair of (ji, j») and (f1, j5) levels, all the state-to-state cross
sections y — 9" are very structured (with glory interference and
resonance features). However, the transitions involving the (1,
3) and (3, 3) levels appear much less structured than the (1, 1)
one because they involve an average over a much larger set of
y — ¢’ cross sections. On passing, we note that some test
calculations were performed to compare indistinguishable and
distinguishable cross sections and it was found that interference
effects due to indistinguishability are negligible at the kinetic
energies studied.

To discuss in more detail the behavior of the elastic and total
cross sections, it is useful to consider a semiclassical formula
due to Landau and Lifshitz>* and Schiff> for the cross section
between structureless particles interacting through a long-range
potential — C¢/RS (see also ref 56). It gives a constant behavior
for the cross section multiplied by »*°, being v the center-of-
mass velocity,

C.\2/5
o(v) x v"° = Q(Cg) = p(f) (19)

where p = 8.083. In 3 we plot o(v) x v*° as a function of
velocity, for three cases (i) the (j;, jo) = (1, 3) elastic cross

section, (ii) the total (elastic + inelastic) cross section for the
same initial state, and (iii) the quantum cross section between
two structureless particles of mass u interacting with the
isotropic component of the PES (atom—atom model). In
addition, the value within the semiclassical model, Q(Cy), is
displayed by a horizontal line.

We discuss first the features of Figure 3 common to the two
PESs under study. The cross section for the atom—atom model
shows an interference pattern with an envelope that oscillates
around the value Q(Cg) predicted by the semiclassical model.
This behavior is due to the glory effect (note that there are also
a few pronounced peaks due to orbiting resonances). For the
complete close-coupling calculation, it can be seen that both
elastic and total cross sections also exhibit glory structures, but
considerably quenched and with displaced maxima and minima
with respect to the atom—atom model. This is the expected trend
since the complete calculation introduces many more state-to-
state transitions within an anisotropic potential, with the result
of a quenching of the interference pattern. Importantly, it is
found that the fotal cross section coincides on average with
Q(Cy); i.e., its absolute value is given, at zero order, by the
long-range behavior of the isotropic term. In addition, from the
comparison with the elastic cross section, it can be seen that
inelastic events contribute significantly to the total cross section.

With respect to the comparison between the ab initio and
Perugia PESs, it can be observed from Figure 3 that the glory
pattern in the full calculation for the Perugia PES is more
quenched that in the case of the ab initio PES. This is probably
due to the effect of the anisotropy of the Perugia PES in this
energy range, already discussed above. However, the most
important difference between both PESs is the absolute values
of the cross sections, which in turn are due to the very different
values of the long-range coefficients of the isotropic component
(see Table 1). It is convenient to note the different origin of the
long-range coefficients: the ab initio coefficients are obtained
from calculations of dynamic polarizabilities,> while the
coefficient of the Perugia PES was derived from measurements
of total cross sections?? at higher velocities than those considered
here.
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(a) (4=1.,=3), ab initio PES
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(b} (j=1.j,=3), Perugia PES
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Figure 3. Elastic and total (elastic + inelastic) integral cross sections, multiplied by v*5 (in A? (m/s)¥5), as functions of v, the center-of-mass
velocity (in m/s). In black are given the cross sections obtained by just retaining the isotropic component of the interaction (atom—atom model).
In addition, the horizontal line shows the semiclassical estimation for an interaction given by —C¢/RS (see eq 19). The initial rotational levels are
(J1» j2) =(1,3) and the results corresponding to the present ab initio and Perugia quintet PESs are shown in the left and right panels, respectively.
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Figure 4. Effect of the selection of the initial rotational level in the
total (elastic + inelastic) cross sections as functions of the center-of-
mass velocity v. Also shown is the semiclassical estimation of eq 19
(horizontal line). Results shown correspond to the ab initio PES.

In Figure 4, we present a comparison of the total (elastic +
inelastic) cross sections for different initial levels (j;, j,), using
the ab initio PES. It can be seen that, while differing at low
velocities, they tend to the same value at the highest velocities.
It is worthwhile to comment that this result has been achieved
by using the convention of eq 16 (i.e., other correction factors
in the literature would give different absolute values of the cross
sections at large velocities). Finally, it can be seen that the cross
sections tend, for the higher velocities, toward values larger than
those predicted by the long-range coefficient Cs of the isotropic
component. The origin of this behavior is discussed below.

Toward a Comparison with Experiments at Higher
Energies. It would be really interesting to test the present ab
initio PES against the total cross sections measured by the
Perugia group?"-?? (together with those corresponding to the sin-
glet and triplet multiplicities, in progress). However, the
experiments involve quite high beam velocities (between 500
and 2000 m/s in the laboratory frame) and, in the case of effusive
beams, high initial rotational states (most populated levels j;
and j, between 9 and 13). In these conditions the close-coupling
calculations become prohibitive due to the increasing number
of channels and partial waves that should be included.

However, it is reasonably expected®’ that inelastic processes
become less probable for high initial rotational levels and that
the use of an atom—atom model using the spherically averaged
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Figure 5. Cross sections (multiplied by %3, in A2 (m/s)¥5) as functions
of the center of mass velocity v (in m/s), within the atom—atom model
where just the spherically averaged term of the interaction is retained.
Results corresponding to the ab initio and Perugia quintet PESs under
comparison are shown in red and blue, respectively. Semiclassical
estimations (eq 19) using the two PESs are also given by the constant
lines. In black, it is shown the effect of including the anisotropy of the
ab initio PES and transitions between magnetic levels for the initial
rotational state (j;, j») = (7,9). See text for discussion and details of
the calculations.

potential will become more realistic than in the case of low
energy and low rotational states collisions. Thus, we have
employed in this section the atom—atom and other simple
dynamical models for obtaining cross sections at higher energies.
The aim is discussing in a qualitative way the performance
of the ab initio PES and the ingredients that should be added to
the theory to simulate in a realistic way the experiments for
these challenging conditions.

In Figure 5 we present the cross sections for the atom—atom
model using the two PESs under study. This calculation has
been performed using the MOLSCAT code including only the
(1, J2) = (0, 0) rotational level and just the isotropic component
of the interaction. It is convenient to point out that the same
results are achieved by using different rotational levels as well
as a semiclassical method:’® these calculations only bring
differences in the fine structure of the cross sections and not in
the main envelope, so we do not show them here for clarity.
The most interesting result is the different behavior of the ab
initio and Perugia PESs at intermediate velocities. While the
Perugia cross section keeps, in average, a value given by Q(Cy),
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the ab initio one tends, on average, toward absolute values higher
than that predicted by the Q(Cg) estimation. Note that this trend
was also found in the total cross sections of the complete close-
coupling calculation (Figure 4). This behavior is due to the shape
of the PESs at relevant intermolecular distances. For velocities
in the range 600—900 m/s, the absolute value of the cross section
is sensitive to the potential features at distances of about 6—7
A. In this region, the Perugia PES is given exactly by —C¢/
RS,22 whereas the ab initio PES needs to be described by higher
order dispersion coefficients (see Figure 1). It well-known®” that
the experimentally derived Cg coefficient must be considered
as an effective term, since in the R range probed by the
experiments, higher order induced multipole-induced multipole
interactions play a significant role.

Center-of-mass velocities relevant for the experiments using
effusive beams range between 300 and 2000 m/s. The spheri-
cally averaged quintet Perugia PES studied here, together with
the corresponding singlet and triplet PESs and within the
atom—atom model, provide an almost perfect agreement with
the observed cross sections.”” Within the limitations of the
atom—atom model, it can be anticipated that the present ab initio
PES will provide a reasonable agreement regarding the positions
and amplitudes of the maxima and minima of the glory
undulations, but it will fail in reproducing the average absolute
value of the cross sections. Given the level of theory of the
electronic structure calculations [RCCSD(T)] and the use of a
large basis,” we do not expect that even more accurate ab initio
calculations will modify the interaction energies at the relevant
intermolecular distances so as to increase significantly the
absolute value of the cross section. It would be worthwhile,
however, to check this statement in future investigations.

On the other hand, from the complete close-coupling calcula-
tions, it has been found that the total cross sections tend, on
average and as the velocity increases, to absolute values larger
than those given by the Q(Cy) value (Figure 4). Certainly, this
is due (at least in part) to the effect of the higher order terms of
the dispersion interaction, as explained above. However, it is
also found that inelastic processes are quite important for a
quantitative estimation of the total cross section (see Figure 3
for instance). We do not expect that for higher rotational levels
the inelastic processes become negligible since, contrary to the
atom—diatom case,”’ a larger density of rotational levels exists.
However, it is unclear that inelastic processes will modify the
average value of the rotal cross section. We think that it is
interesting to study the role of the rotational transitions for higher
total collision energies and this could be performed by means
of less demanding treatments such as the coupled states
approximation.®

Another effect that should play a role even in the elastic cross
sections® is the anisotropy of the PES in modifying the state-
to-state transitions jymjom, — jimijom5 and thus in shaping
0j,j,—jyj, after averaging over my, m,, mj, mh. We have carried
out a test close-coupling calculation restricted only to the (j;,
J2) = (7, 9) level (which is expected to be populated in the
experiment) but including all the magnetic sublevels and the
whole anisotropy of the ab initio PES. The result is shown in
Figure 5 by the black line. It can be seen that elastic (but
magnetic levels changing) transitions quench the glory oscil-
lations and modify the positions of the extrema toward larger
velocities. This modification should bring a noticeable effect
in the simulation of the observed cross sections. Similar test
calculations in O,—Kr also obtained a reduction of the glory
amplitude but not a shift in the position of the glory extrema.>’
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Finally, it must be noted that the rotational levels of oxygen
molecules in their ground electronic state °%, undergo a non-
negligible splitting due to second-order spin—orbit and spin—spin
couplings® with a coupling constant of the order of the rotational
constant B. Inclusion of these terms in the Hamiltonian for the
0,—0, interaction is essential in the study of collisions at low
and ultralow®!? energies. Interestingly, such an intramolecular
fine structure brings modifications and splittings of the singlet,
triplet, and quintet intermolecular potentials.>!** It would be
interesting to investigate if it will modify in a significant manner
the effective long-range behavior of the intermolecular interac-
tion. Studies in the directions mentioned above are planned for
the future.

V. Summary and Conclusions

Elastic and rotationally inelastic cross sections for the collision
of two vibrationless oxygen molecules have been computed
using quantum scattering methodology with full dimensionality.
Special care has been taken to properly include the symmetry
with respect to interchange of identical particles. Two potential
energy surfaces are analyzed: a recently developed ab initio
potential surface of high accuracy for the quintet state and the
most reliable experimentally derived potential of the Perugia
group. One of the main drives for this work is that the accurate
determination of the interaction potential for two oxygen
molecules has remained a challenging problem for both theory
and experiment and although there exists overall agreement in
the main features there are still important discrepancies in the
quantitative determination of the finer details. In this sense the
calculation of the collision dynamics allows a detailed probing
of subtle properties of the interaction potential. Furthermore,
the experimental determination of the interaction potential
depends on dynamical approximations for the collision process
which can now be put to a test.

The predicted elastic cross sections (low initial rotational
states) for both potentials show the expected kinetic energy
dependence but the Perugia potential leads to larger absolute
values. This can be directly related to the differences in the
description of the long-range tail of the interaction, more
specifically, to the more attractive terms included in the Perugia
PES. On the basis of many independent and reliable estimates
of the dispersion coefficients we conclude that the Perugia
potential overestimates the value of the Cg coefficient of the
isotropic interaction, since at the intermolecular distances probed
by the experiments, higher order induced multipole-induced
multipole interactions are playing a significant role. The inelastic
cross sections predicted with both potentials are very similar
but again the absolute values are larger in the case of the Perugia
PES. This indicates a higher anisotropy that would have been
difficult to predict based on the topography of the surfaces. A
test of the anisotropy of the O,—O; interaction could be done
by means of combined experimental-theoretical studies of the
evolution of rotational populations measured by Raman spec-
troscopy along supersonic free jets expansions, as recently done
for Nz_N2.45

These findings might have implications in understanding the
behavior of oxygen molecules at very low temperatures. Very
recently, Tscherbul et al.'” used the Perugia PES in quantum
mechanical calculations of cold and ultracold O, + O, collisions
in a magnetic field. They found that magnetic spin relaxation
is generally very efficient and thus evaporative cooling would
be very difficult to achieve. The mechanism for spin depolar-
ization'? involves couplings between rotational levels and hence
the anisotropy of the PES plays a determinant role. The ab initio



14960 J. Phys. Chem. A, Vol. 113, No. 52, 2009

PES, as is less anisotropic at low energies, could improve the
present prospects for evaporative cooling. In addition, the
different long-range interaction might change the features of
the suppression of spin-changing transitions at low energies and
magnetic fields. A d-wave centrifugal barrier in the exit channel
(due to conservation of the angular momentum projection) is
the cause of the suppression of the relaxation process.” The
smaller ab initio Cq coefficient makes the height of the d-wave
barrier higher and this could allow evaporative cooling at
somewhat higher magnetic fields than those predicted in ref 10.
It would be very interesting to carry out calculations as those
presented in ref 10 using the new ab initio PES. To this end, ab
initio PESs for the singlet and triplet multiplicities are needed.*
Work in this direction is underway.

Fine structure of the monomers has not been considered in
the present treatment. Spin-dependent interactions, being de-
terminant in cold collisions, could also play a role in the energy
range studied here, given the extreme sensitivity of the cross
sections to the long-range tail of the potential. Future investiga-
tions should include these interactions. Moreover, it would be
interesting to study the collision dynamics at higher energies
(using approximations such as helicity decoupling), and perform
simulations of the experiments using supersonic seeded beams
with control of the molecular alignment.?!?> Efforts in these
directions are in progress.
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